ebooks and download videos Search All  Title  Author 
Home / Nonfiction / Mathematics

Analytical Solution Methods for Boundary Value Problems

| £83.28 | €93.66 | Ca$135.11 | Au$133.34
by A. S. Yakimov
What is this?DRM-EPUB by download  |  $99.95
What is this?DRM-PDF by download  |  $99.95
add to wish list
Analytical Solution Methods for Boundary Value Problems by A. S. Yakimov

Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems.

Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods.

  • Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers
  • Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series
  • Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation
  • Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies
  • Features extensive revisions from the Russian original, with 115+ new pages of new textual content

To view this DRM protected ebook on your desktop or laptop you will need to have Adobe Digital Editions installed. It is a free software. We also strongly recommend that you sign up for an AdobeID at the Adobe website. For more details please see FAQ 1&2. To view this ebook on an iPhone, iPad or Android mobile device you will need the Adobe Digital Editions app, or BlueFire Reader or Txtr app. These are free, too. For more details see this article.

SHARE  Share by Email  Share on Facebook  Share on Twitter  Share on Linked In  Share on Delicious
or call in the US toll free 1-888-866-9150 product ID: 865092

Ebook Details
Pages: 200
Size: 6.0 MB
Publisher: Academic Press
Date published:   2016
ISBN: 2370007602285 (DRM-EPUB)
9780128043639 (DRM-PDF)

DRM Settings
Copying:not allowed
Printing:not allowed
Read Aloud:  not allowed

This product is listed in the following category:

Nonfiction > Mathematics

If you find anything wrong with this product listing, perhaps the description is wrong, the author is incorrect, or it is listed in the wrong category, then please contact us. We will promptly address your feedback.

Submit 5 page SummaryWhat is this?

© 2016